

Die DB Netz AG

Kompetenz aus einer Hand

- Betreiben von Europas größter Schieneninfrastruktur
- Instandhaltung, Modernisierung und Weiterentwicklung des Streckennetzes
- Sicherstellung von Qualität und Kapazität
- Vermarktung von Trassen und Anlagen

Kundenorientierung

- Umfassende Beratung von Verkehrsunternehmen
- Kapazitätsmanagement bei Trassenvergabe und Fahrplankonstruktion
- Tools für den **einfachen Zugang** zum Netz
- Echtzeitinformationen für transparente Planung
- **Serviceeinrichtungen** wie Umschlagterminals und Abstellanlagen
- Infrastrukturanschlüsse an das Netz der DB

Die DB Netz AG

DB Netze Fahrweg

Schienennetz

DB Netze Personenbahnhöfe

Verkehrsstationen

DB Netze Energie

Traktions- und Stationäre Energien

- Leistung im öffentlichen Auftrag
- Kein Wettbewerb, Monopolstellung auf regulierten Märkten
- Kunden: Transporteure und EVU

Kennzahlen im Überblick Unternehmenszahlen 2021

6.152 Mio. € Umsatz

9.358 Mio. € Bruttoinvestitionen

65.221 Weicher

46.695 Mitarbeitende

33.288 km Streckennetz

25.163 Brücken

745 Tunnel

3.842 Stellwerke

Ressorts DB Netz

DB Netze Fahrweg

I.N

Vorsitzender

Dr. Philipp Nagl

I.ND

Vorstandsbeauftragter DSD

Dr. Volker Hentschel

I.NA

Anlagen- und Instandhaltungsmanagement

Heike Junge-Latz

I.NB

Betrieb, Fahrplan, Vertrieb und Kapazitätsmanagement

Dr. Christian Gruß

I.NI

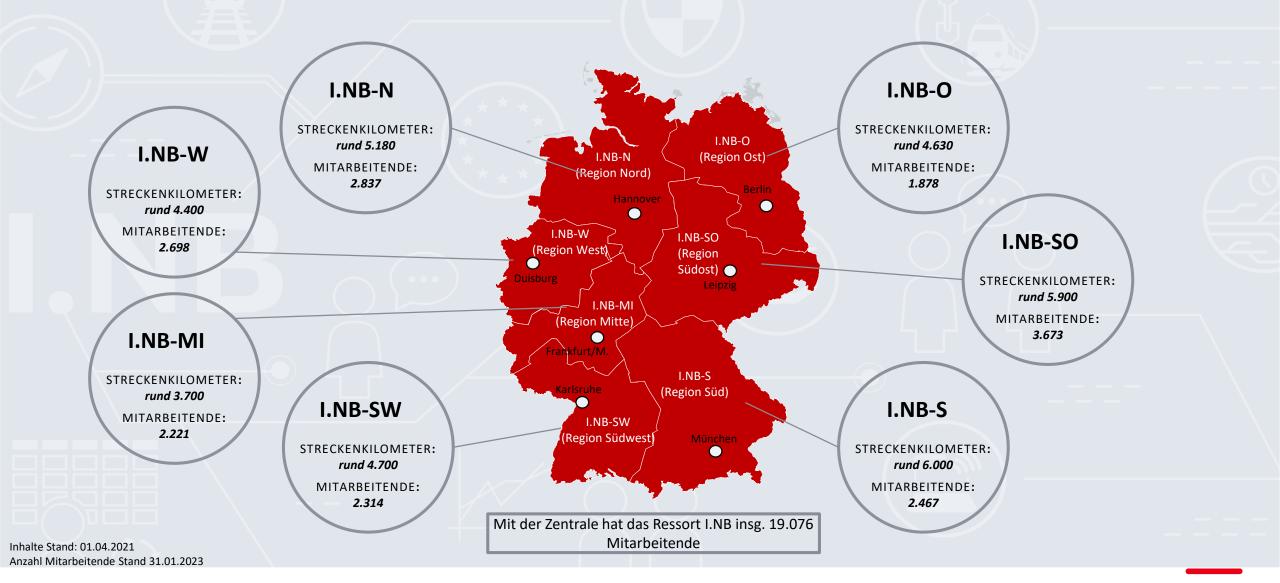
Infrastrukturprojekte

Ingrid Felipe

I.NF

Finanzen/ Controlling

Jens Bergmann


I.NH

Personal

Heinz Siegmund

Die sieben Regionen verantworten die Themen Betrieb, Fahrplan, Vertrieb und Kapazitätsmanagement in der Fläche

Die Aufbaustruktur der Regionen

I.NB-X

Betrieb, Fahrplan, Vertrieb und Kapazitätsmanagement Region

I.NB-x-N-y

Betrieb Netz

I.NB-x-N-y-P

Betrieb

Örtliche Planung

I.NB-O-Z

Betriebszentrale S-Bahn Berlin

I.NB-x-B

Betriebszentrale

I.NB-x-B 1

Netzdisposition

I.NB-x-B 2

Fahrdienst Betriebszentrale

I.NB-x-B3

Plankorridor und Planstart

I.NB-x-F

Fahrplan und Kapazitätsmanagement

I.NB-x-F1

Konzeption Bautakte und Integrierte Bündelung

I.NB-x-F 2

Netzfahrplan

I.NB-x-F3

Unterjähriger Fahrplan

I.NB-x-F4

Baubetriebsmanagement

I.NB-O-FS

Fahrplan S-Bahn Berlin

I.NB-x-F 5

Fahrplan für Zugmeldestellen

I.NB-x-Q

Steuerung und fachl.

Qualifizierung Betrieb

I.NB-x-Q1

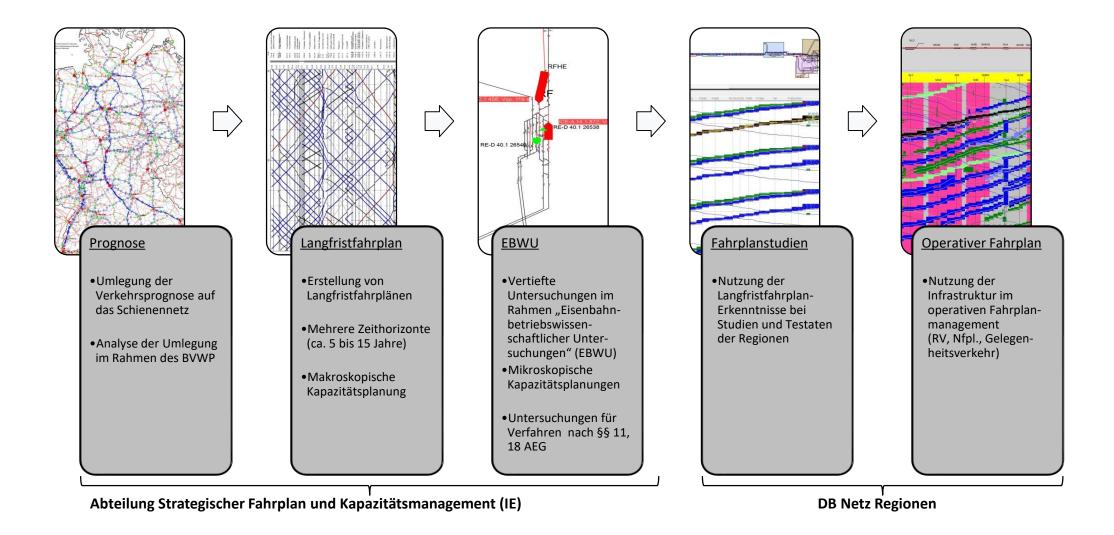
Grundsätze Betrieb, BIDM u. Digitalisierung

I.NB-x-Q 2

Fachliche Qualifizierung

I.NB-x-V

Vermarktung Serviceeinrichtungen u. Infrastrukturanschlüssen


I.NB-x-I

Infrastrukturentwicklung

Die integrierte Angebots- und Kapazitätsplanung der DB Netz AG findet in mehreren Phasen statt

Wesentlicher Teil der Verkehrsinfrastrukturpolitik des Bundes sind der Bundesverkehrswegeplan und die Ausbaugesetze

Der **Bundesverkehrswegeplan (BVWP)** ist Grundlage der Verkehrsinfrastrukturpolitik des Bundes für die nächsten 10 bis 15 Jahre. Er ist kein Finanzplan und hat keinen Gesetzescharakter. Er wird vom Bundeskabinett beschlossen.

Auf Basis des BVWP erstellt die Bundesregierung den Gesetzentwurf zur Änderung der Ausbaugesetze mit den dazugehörigen Bedarfsplänen.

Im Bundesverkehrswegeplan werden Verkehrsströme im Rahmen einer gesamthaften Verkehrsprognose (Straße, Schiene, Wasser) zu Grunde gelegt. Diese Daten sind **Grundlage** für die **Zugzahlen** der im BVWP hinterlegten **Neu-/ und Ausbauprojekte.**

Die Ermittlung der Zugzahlen erfolgt durch den Bund. Die Zugzahlen werden nach Fertigstellung an die Deutschen Bahn als Planungsgrundlage übergeben.

Prognose 2030 des BMVI (heute BMDV): Zentrale Leitdaten der Verkehrsprognose

2010 2030	1 .								
2010 2030	Insg.	p.a.							
80,210 78,249 Einwohner (Mio. Personen) ¹⁾ 80,210 78,249	-2,4	-0,1							
·									
(Mio. Personen) - 0 - 9 6,898 6,637	-3,8	-0,2							
- 10 – 17 6,324 5,419	-14,3	-0,8							
- 18 – 44 27,292 23,570	-13,6	-0,7							
- 45 – 64 23,199 20,973	-9,6	-0,5							
- 65 + 16,496 21,651	31,2	1,4							
Schüler (Mio. Personen) ²⁾ 11,078 9,496	-14,3	-0,8							
Erwerbspersonen (Mio. Personen) ³⁾ 41,549 39,734	-4,4	-0,2							
2178 2732									
(Mrd. Euro) BIP (Mrd. Euro) ⁴⁾ 2178 2732	25,4	1,1							
Exporte (Mrd. Euro) ⁴⁾ 658 1342	103,9	3,6							
Importe (Mrd. Euro) ⁴⁾ 548 1198	118,7	4,0							
Erwerbstätige (Mio. Personen) 39,8 39,0	-2,0	-0,1							
Pkw-Bestand (Mio.) ⁵⁾ 42,302 45,909	8,5	0,4							
Pkw-Dichte (Pkw pro 1000 Einw. 18+) 631 694	9,8	0,5							
1) Auf Basis des Zensus 2011									
2) An allgemeinbildenden Schulen gemäß BBSR, an berufsbildender	_	(2011)							
3) 2030 unter Berücksichtigung der Anhebung des Renteneintrittsalters4) Reale Werte, in Preisen von 2000									
5) Zum 1.Januar des Folgejanrs, onne vorubergenend stillgelegte Fa	5) Zum 1.Januar des Folgejahrs, ohne vorübergehend stillgelegte Fahrzeuge								

Entwicklung des Personenverkehrs

	Absolut	te Werte	Modal-S	Split (%)	Veränderung 2030 : 2010					
	2010	2030	2010	2030	insgesamt in %	in % p.a.				
Verkehrsleistung (Mrd. Pkm)										
			des motorisie	rten Verkehrs						
Motor. Individualverkehr	902,4	991,8	80,8	78,6	9,9	0,5				
Eisenbahnverkehr	84,0	100,1	7,5	7,9	19,2	8,0				
ÖSPV	78,1	82,8	7,0	6,6	6,0	0,3				
Luftverkehr	52,8	87,0	4,7	6,9	64,8	2,5				
Summe Motoris. Verkehr	1.117,3	1.261,7	100,0	100,0	12,9	0,6				

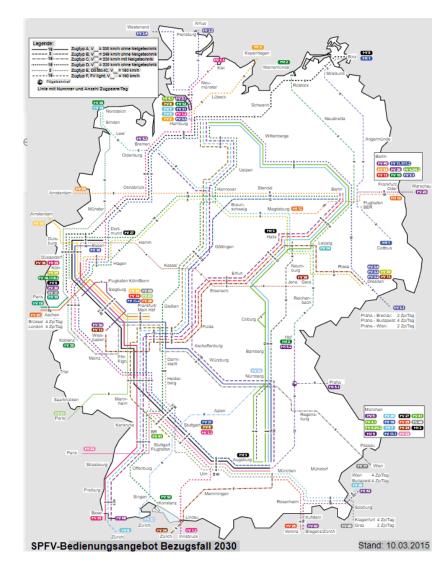
Entwicklung des Güterverkehrs

		2010			2030				Veränderung 2010-2030			
	Mid	o. t	Ante	il in %		Mio. t		Anteil in %	in %			
Transportaufkommen												
Schiene		358,9		9,7%		443,	7	10,2%	23		23,6%	
Straße	3.1	116,1		84,1%		3.639,	1	83,5%			16,8%	
Binnenschif	f 2	229,6		6,2%		275,	6	6,3%	2		20,0%	
Summe	3.7	704,7	,	100,0%		4.358,	4	100,0%	17		17,6%	
	2	010			20	030			Transportweite		in km	
	Mrd. tkm		eil in %	Mrd. tkm		Anteil in %		/eränderung 2010-2030 in %	2010		2030	Veränd. 2010- 2030 in %
Transportleistung												
Schiene	107.6	,	17.7%	153.	7	18.4%		42.9%	30	o I	347	15.6%
Straße	437,3	7	72,0%	607,	,4	72,5%		38,9%	14	0	167	18,9%
Binnen- schiff	62,3		10,3%	76,	,5	9,1%		22,8%	27	1	277	2,3%
Summe	607,1	10	00,0%	837,	,6	100,0%		38,0%	16	4	192	17,3%

Quelle: Verkehrsverflechtungsprognose 2030 BMVI 2014

Von der Verkehrsprognose zu den Zugzahlen

Schienenpersonenverkehr –


Personenfernverkehr

- Schritt 1: Basis für das Zugangebot im SPFV (Linienführung, Frequenzen) wird z.
 B. aus einer bestehenden Untersuchung abgeleitet (z. B. Mittelrheinstudie) und übernommen
- Schritt 2: Projektion der Verkehrsströme aus der Verkehrsprognose 2030 auf die Züge aus Schritt 1
- Schritt 3: Prüfung inwieweit die Züge aus Schritt 2 überlastet oder gering ausgelastet sind
- Schritt 4: Anpassung einzelner Linienführungen oder auch Zugfrequenzen (iterativer Prozess)

Personennahverkehr

 Die Zahlen im SPNV wurden durch die Gutachter des BMVI bei den Aufgabenträgern abgefragt (regionale Nahverkehrspläne)

Quelle: BMVI 2015

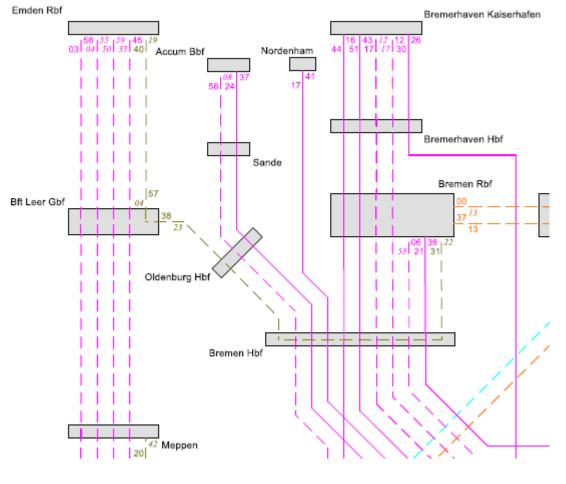
Von der Verkehrsprognose zu den Zugzahlen

- Schienengüterverkehr - Ermittlung in drei Modellschritten

Schritt 1: Wagenbildung

- Abbildung der zonalen Nachfragemengen auf der Ebene der Bedienpunkte (einschließlich Knotenbahnhöfe, Umschlagbahnhöfe, Rangierbahnhöfe/Drehscheibe).
- Umrechnung der Nachfragemengen (Tonnen) in beladene Wagen. Basis sind sog. Musterwagen, die je nach Produktionssystem und Gütergruppe vorgegeben sind
- Über die mittlere Beladung und das Eigengewicht der Musterwagen lassen sich die Nachfragemengen direkt in beladene Wagen umrechnen.

Schritt 2: Zugbildung


Umrechnung der aus der Wagenbildung resultierenden Jahresmengen auf Tageswerte je Produktionssystem.

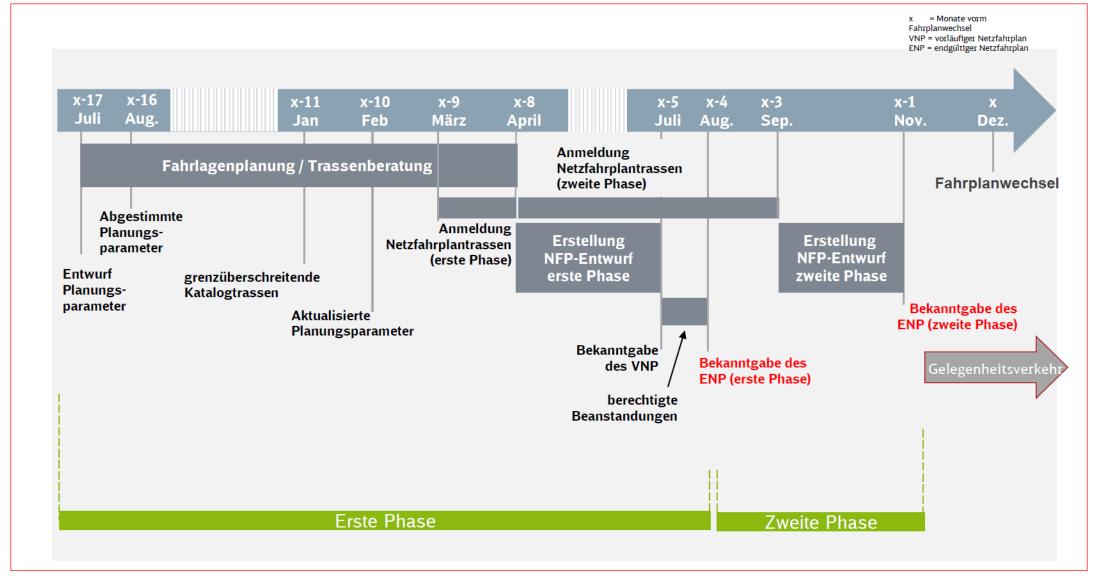
Schritt 3: Netzumlegung

 Ausgangspunkt der Zugführung ist die Grundlast aus Personenfern- und Personennahverkehrszügen. Anschließend werden die in der Zugbildung gebildeten Güterzüge in einer definierten Reihenfolge Zug für Zug auf das Schienennetz umgelegt.

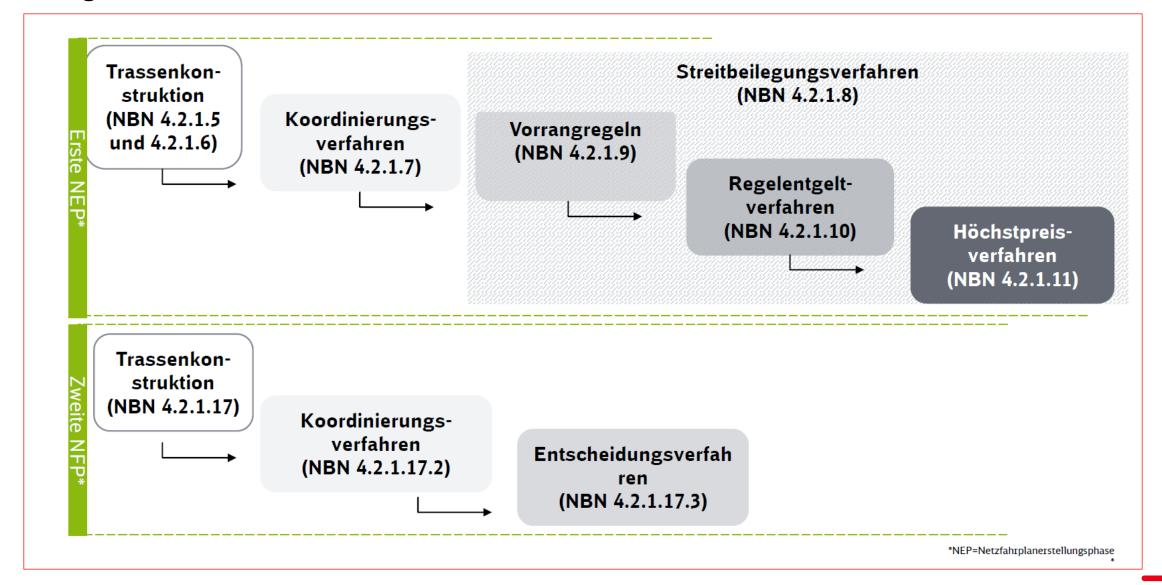
Im Deutschlandtakt werden aus den ermittelten Zugzahlen sogenannte Systemtrassen abgeleitet und berücksichtigt

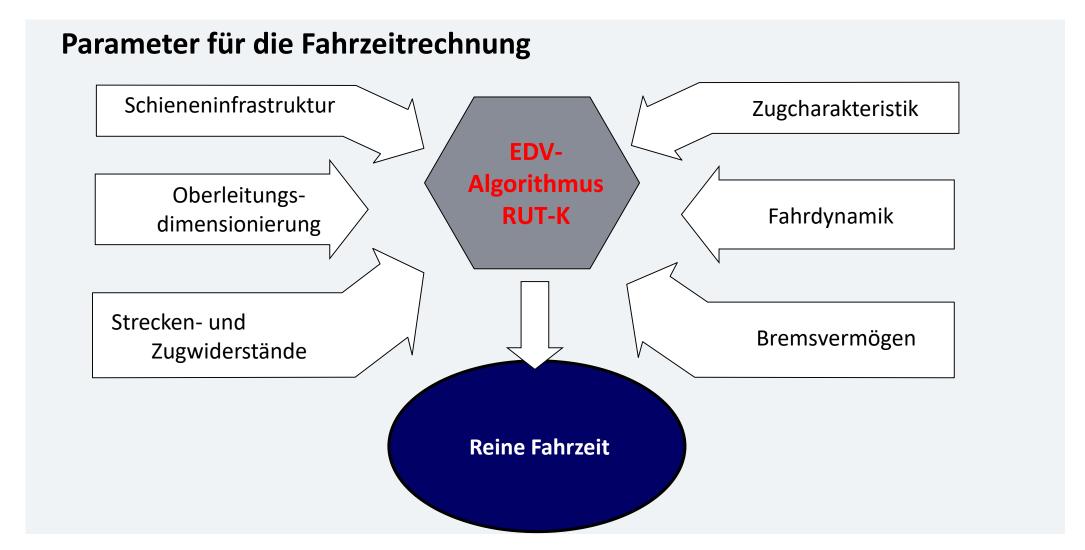
Lesebeispiel:

- Zwischen Emden und Leer verkehren in 2 Stunden 4
 Standardgüterzüge je Richtung, die aus Richtung
 Rheine/Münster/Ruhrgebiet kommen
- Dazu kommt eine weitere Trasse in 2 Stunden nach Bremen Rbf
- Nach Bremerhaven verkehren in 2 Stunden 8
 Güterzüge je Richtung

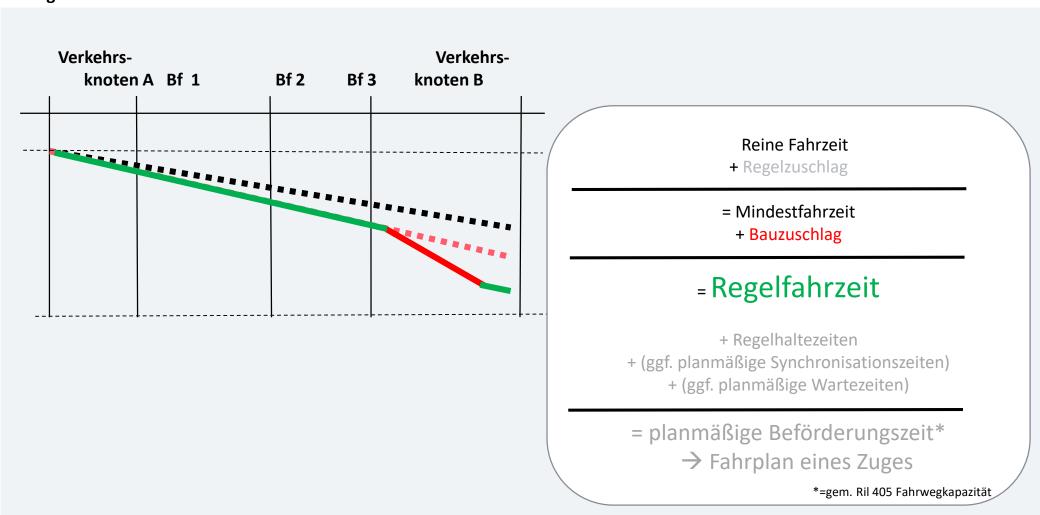

SGV-Trasse im 2-Stundentakt SGV-Trasse im Stundentakt Flexi-Trasse (100 km/h, bis 1500 t, 1 x BR 185 z.T. auch Dieseltraktion mit Lokwechsel) Diese ermöglichen es Güterverkehrsunternehmen flexibel z.B. auf Auftragsspitzen und Betriebsstörungen zu Zugtypen (Modellzüge für SGV-Trassen) Schnellgüterzug (120 km/h, bis 1500 t, 1 x BR 185) Standardgüterzug (100 km/h, bis 2000 t, 1 x BR 185) (100 km/h, bis 1500 t, 1 x BR 185, z.T. auch Dieseltraktion mit Lokwechsel)

Quelle: Deutschlandtakt, BMVI 2020

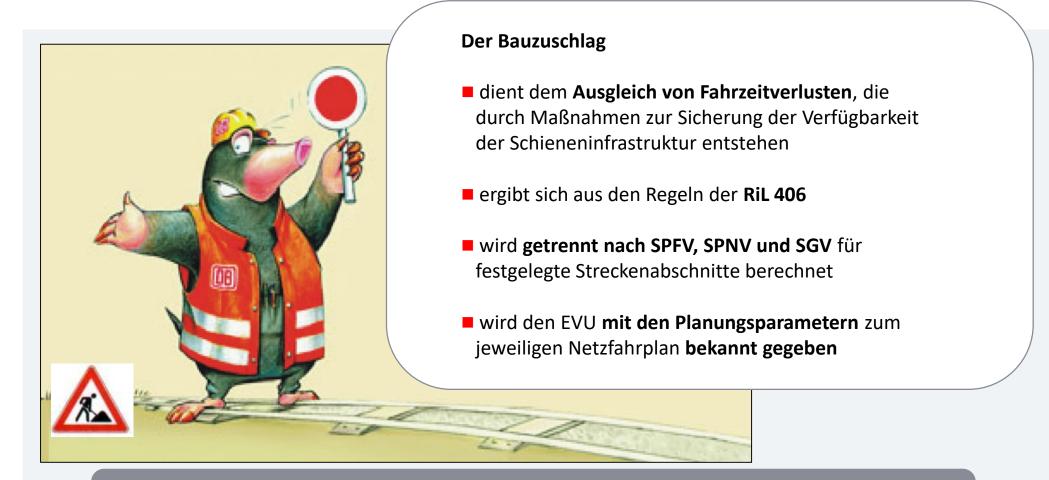

Die Erstellung des Netzfahrplans erfolgt in zwei Phasen mit einem zeitlichen Vorlauf von ca. 17 Monaten


Das Entscheidungsschema gemäß Eisenbahnregulierungsgesetz als Vorgabe für die Infrastrukturbetreiber in Deutschland

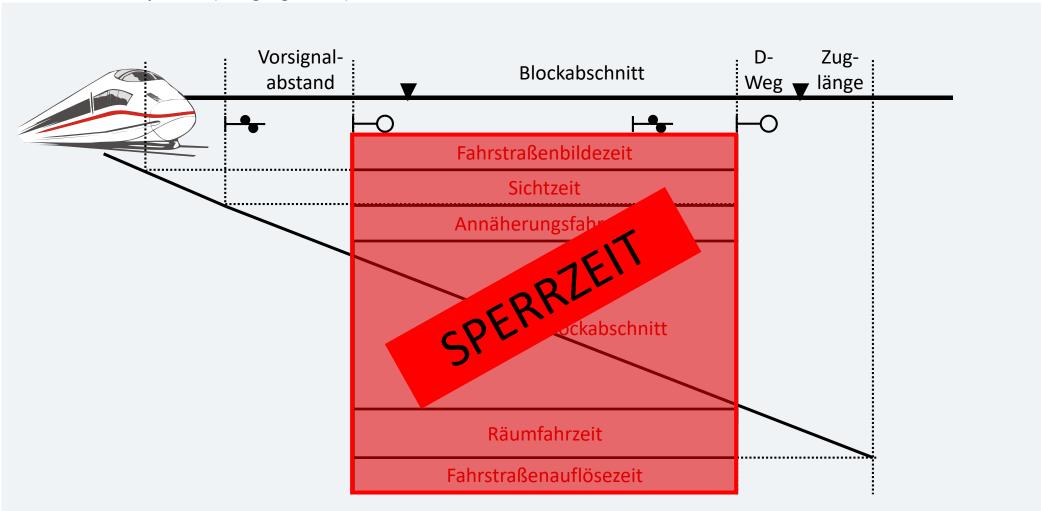
Physikalische und technische Rahmenbedingungen beeinflussen die Fahrzeitrechnung im Programm RUT-K



Die Summe aus reiner Fahrzeit, Regelzuschlag und Bauzuschlag ergibt die Regelfahrzeit

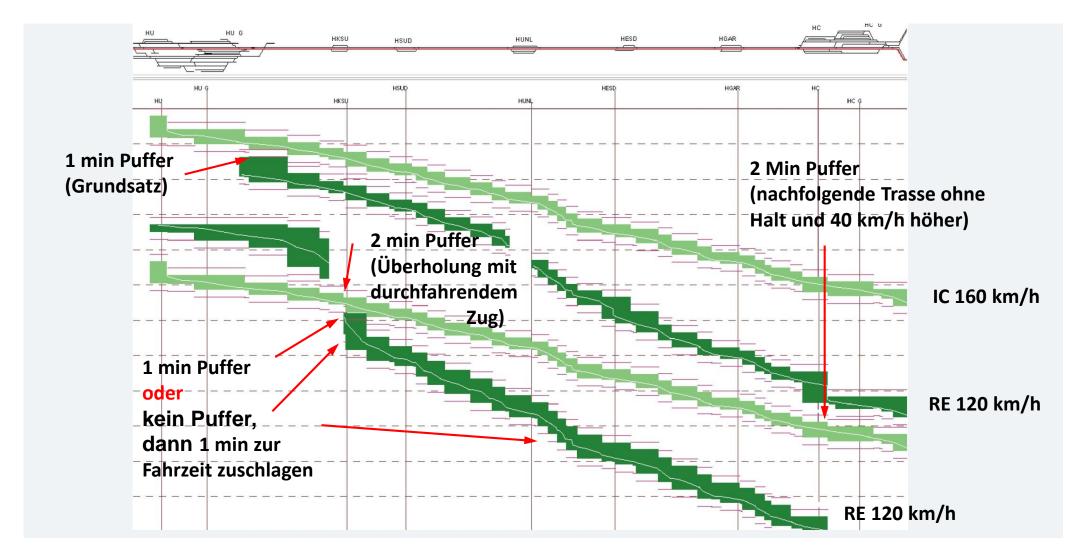


Die Bauzuschläge werden als Bestandteil der Planungsparameter zu jedem Netzfahrplan bekannt gegeben



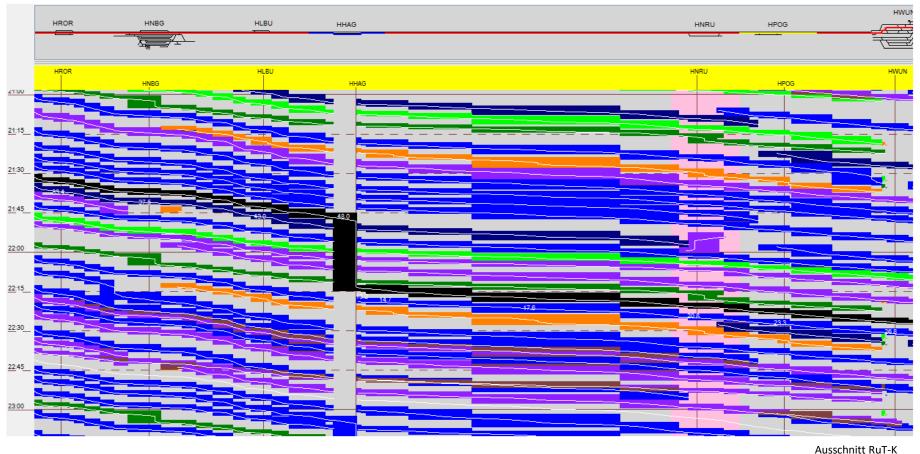
Um eine optimale Nutzung des Bauzuschlages zu erreichen, ist dieser **am Ende eines**Streckenabschnittes vor einem Verkehrsknoten einzuarbeiten.

Die Sperrzeit wird in RuT-K berechnet

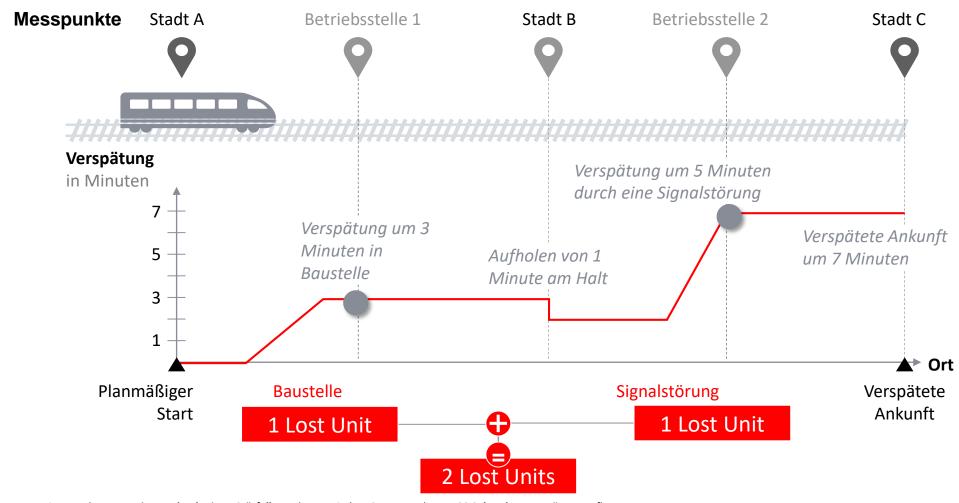


Elemente der Sperrzeit (Belegungszeiten)

Wie werden die Pufferzeiten auf der zweigleisigen Strecke angewendet?

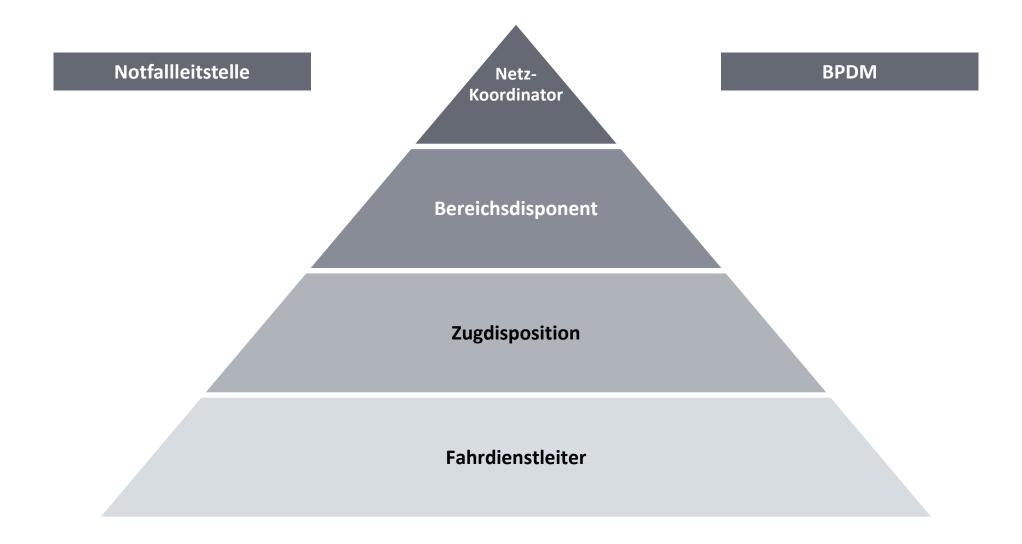


Im Gelegenheitsverkehr werden die Resttrassen vermarktet



Die Trassierung im Gelegenheitsverkehr erfolgt mit der Software RUT-K in der noch vorhandenen Restkapazität:

Aus "Zukunft Bahn" wurde die Steuerungsgröße "Lost Unit" entwickelt, um unseren Qualitätsanspruch gerecht zu werden


Eine Lost Unit entsteht, wenn **ein Zug durch einen Störfall** an 1 bzw. zwischen 2 Messpunkten ≥ **90 Sekunden Verspätung** aufbaut. Ein Abbau von LU ist nicht möglich.

Der organisatorische Aufbau des Betriebs

BZ Karlsruhe – Fahrdienst

Kerntätigkeit: Steuerung des Zugbetriebs

özF - örtlich zuständiger Fahrdienstleiter

Nutzung eines Standardbedienplatzes ESTW-BZ (SBP)

- SBP mit 4-8 Monitoren für die schematische Darstellung des Bedien-/Stellbereiches
- 1 Monitor für Kontrollanzeigen ESTW
- 2 Monitore für Leittechnik
- 1 Monitor für BKU-Arbeitsplatz
- 1 Monitor Linienzugbeeinflussung

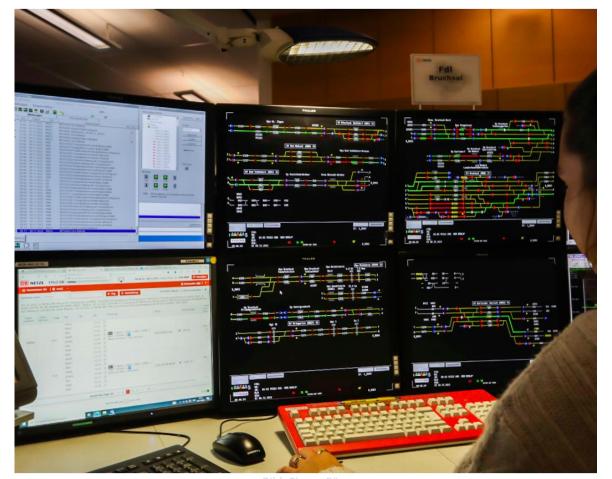


Bild: Simon För

BZ Karlsruhe – Fahrdienst

Kerntätigkeit: Steuerung des Zugbetriebs

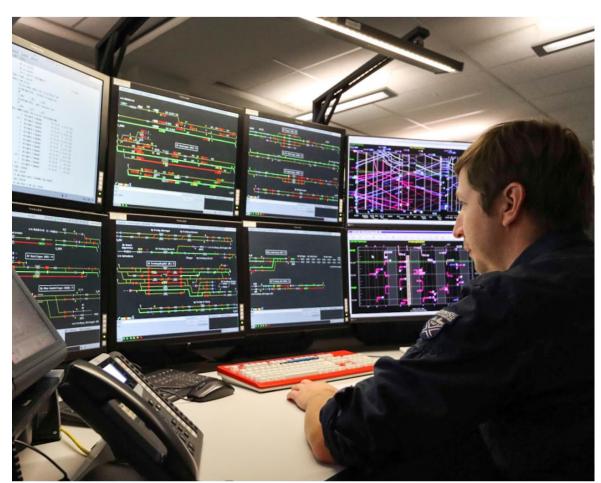


Bild: Simon För

Bereichsübersichten (Berü)

- Wirklichkeitsähnliche Darstellung des Stellbereiches,
 vereinfachte Darstellung der Meldeanzeigen
- Einstellen von Zug-/Rangierstraßen möglich
- Keine Hilfsbedienungen möglich

Lupen

- Elementgenaue Darstellung der Gleis- und Signalanlagen, alle
 Detailangaben sichtbar
- Ausführen von Hilfshandlungen bei Störungen möglich

BZ Karlsruhe – Zugdisposition

DB NETZE

Kerntätigkeit: Bestmögliche Durchsetzung des Zugaufkommens

ZD - Zugdisponent

Arbeitsplatz

- Bedienplatz mit 7 Monitoren für die schematische Darstellung des Betriebsgeschehens
- 1 Monitor für BKU-Arbeitsplatz

Tätigkeit

- Disposition des Zugverkehrs auf Strecken und Knoten
- Beobachtung des Betriebsablaufs
- Regelung der Zugreihenfolge
- Einleitung dispositiver Maßnahmen bei Störungen

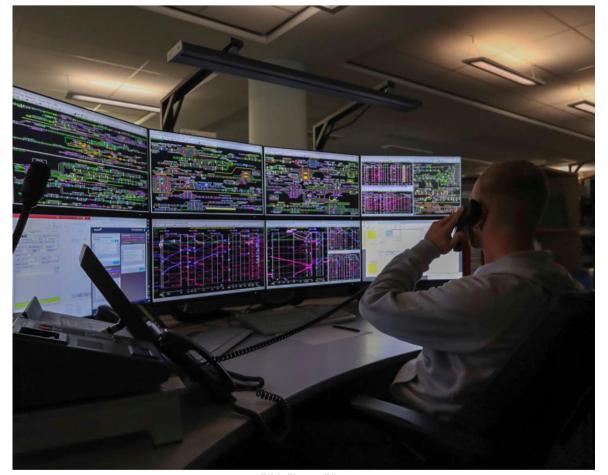


Bild: Simon För

BZ Karlsruhe – Bereichsdisposition

Kerntätigkeit: Aktive Betreuung EVU

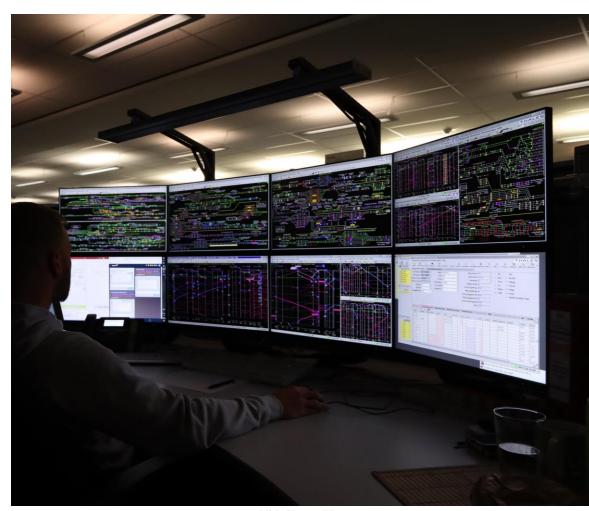


Bild: Simon För

BD - Bereichsdisponent

Arbeitsplatz

- Bedienplatz mit 7 Monitoren für die schematische Darstellung des Betriebsgeschehens
- 1 Monitor für BKU-Arbeitsplatz

Tätigkeit

- Koordination und Disposition im Zuständigkeitsbereich
- Erstellung von Betriebsprogrammen bei kurzfristigen Infrastruktureinschränkungen
- Bearbeitung von Kundenbeschwerden und –wünschen

BZ Karlsruhe – Netzkoordination

Kerntätigkeit: Koordination des Zugverkehrs im Regionalbereich

NK - Netzkoordinator

Arbeitsplatz

- Bedienplatz mit 7 Monitoren für die schematische Darstellung des Betriebsgeschehens
- 1 Monitor für BKU-Arbeitsplatz

Tätigkeit

- Letztentscheid
- Managementinfo
- Ansprechpartner
- Aktive Information der Kunden bei Abweichungen im Betriebsablauf
- Abstimmung beim Evakuieren von Zügen

Bild: Simon For

BZ Karlsruhe – BPDM

Kerntätigkeit: Datenaufarbeitung

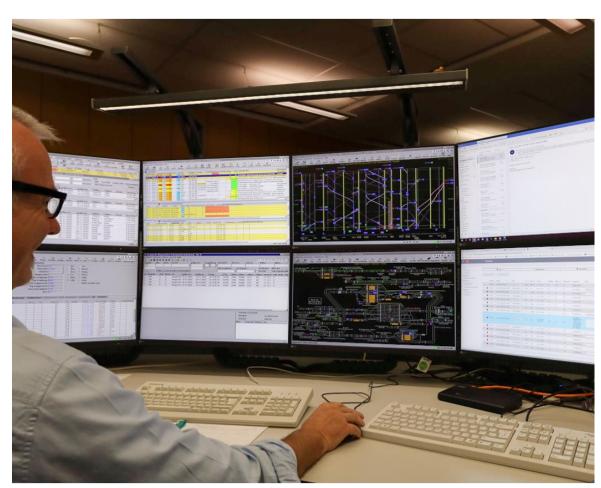


Bild: Simon För

BPDM - BetriebsProzessDatenManager

Arbeitsplatz

- Bedienplatz mit 7 Monitoren für die schematische Darstellung des Betriebsgeschehens
- 1 Monitor für BKU-Arbeitsplatz

Tätigkeit

- Prüfung und Berichtigung von Fahrplandaten
- Überprüfung der Betriebsprozessdaten
- Eingabe von Fahrplanänderungen in die Leitsysteme
- Überwachung, Bearbeitung und Abschluss von Störfällen

BZ Karlsruhe – Notfallleitstelle

Kerntätigkeit: Aufrufen von Hilfe

NFLS - Notfallleitstelle

Arbeitsplatz

- Bedienplatz mit 4 Monitoren für die schematische Darstellung des Betriebsgeschehens
- 2 Monitore für BKU-Arbeitsplatz
- 2 Monitore für spezielles Kartenmaterial, Ansprechpartner & Telefonnummern

Tätigkeit

- Bewältigung gefährlicher Ereignisse (Melde- & Alarmierungswege)
- Aufrufen von Hilfe
- Einsatzdokumentation
- Alarmierung Notfalltechnik

Bild: Simon For

Dispositionsziele

Regelzustand

Schnellstmögliche Wiederherstellung der Planmäßigkeit der

Betriebsführung

Flüssigkeit

Gewährleistung der Flüssigkeit des Betriebes

Pünktlichkeit

Verbesserung der Gesamtpünktlichkeit aller Züge

Auslastung

Maximale Auslastung der Kapazität von Strecken und Knoten

DB Netz AG | I.NB-SW | Rüdiger Weiß

Betriebsqualität

Einflüsse auf Betriebsabwicklung

Kurzfristige Änderung der Verkehrsnachfrage

Kundenwünsche mit Auswirkung

Äußere Einflüsse

Störungen an Infrastruktur

Abweichung von geplanten Trassen

Herausforderung:

- Betriebsniveau stabilisieren
- Qualitätsminderungen minimieren
- Trassenkapazität maximieren

Entscheidungsmöglichkeiten

Kundenwünsche

29

- Anschlussdisposition
- Umlaufänderungen
- Fehlende
 Mindestbremshundertstel

- Änderung der Zugreihenfolge durch Überholung
- Fahren auf Abstand
- Geschwindigkeitsvorgaben

- Umleitungen
- Zurückstellen von Zügen
- Ausfall/Teilausfall von Zügen
- Wenden von Zügen

Für Dispositionsentscheidungen im dispositiven Störungsmanagement ist die **Beteiligung der betroffenen EVU an der Entscheidungsfindung unerlässlich**

Prioritäten im Betriebsablauf

Hilfszüge

Dringliche Hilfszüge haben Vorrang vor anderen Zügen.

Bild: Deutsche Bahn AG / Georg Wagne

Züge mit Priorität

- Trassen können mit unterschiedlicher
 Priorität im Betriebsablauf bestellt
 werden
- Züge auf besonderen Schienenwegen

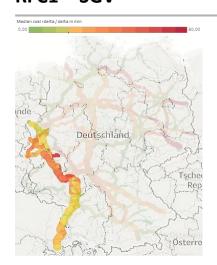
Bild: Korbinian Eckert / Flickr

Züge ohne Priorität

Bei gleichwertigen Zügen haben schneller fahrende Züge grundsätzlich Vorrang vor langsamer fahrenden

Bild: Korbinian Eckert / Flicl

Rheintal mit hohem LU und Verkehrsaufkommen im SPV – RFC1 für SGV wichtigen NETZE Korridor mit unterdurchschnittlicher Pünktlichkeit


Rheintal – SPV

Key Facts SPV

- Belastung: 5 Teilabschnitte als überlastet in den SNB erklärt; über 300 Zugläufe pro Tag¹; viele laufende Maßnahmen zur Kapazitätssteigerung
- Betriebsqualität: 12% der Bundesweit auftretenden LU werden in diesem Abschnitt gebucht (ca. 10% der Gesamt-LU des Fernverkehrs auf Rheintalbahn)
- SPNV: Etwa 40% des Verkehrsaufkommens¹ auf dem Abschnitt, Vergabenetz 4 ("Rheintal") seit 06/2020 in Betrieb; RE Karlsruhe-Basel (2,1 Mio Zugkm), RB Offenburg-Basel (1,9 Mio Zugkm)
- Fernverkehr: Etwa 20% des Verkehrsaufkommens¹, Abschnitt von 10 Linien befahren; \emptyset 64 Fahrten pro Tag; aus Norden kommende Züge haben langen Laufweg zurückgelegt

RFC1 - SGV

Key Facts SGV

- Pünktlichkeit SGV: Unterdurchschnittlich auf dem RFC1 ggü. Gesamtnetzperformance mit -6,4%-Pkt.²
- Belastung: 1/3 aller Güterverkehrszüge verkehren teilweise oder ganz auf RFC1² sowie mehrere hochbelastete Knoten auf bzw. an RFC1 liegend (Oberhausen/Duisburg, Köln, Frankfurt)
- Grenzübergänge: Insgesamt vier wichtige, davon zwei sehr stark ausgelastete (Emmerich/Basel/Venlo/Aachen)
- SGV-Anlagen: Wichtige ZBA entlang gesamten Korridor (z.B. Oberhausen, Köln-Gremberg/Eifeltor, MZ-Bischofsheim, Mannheim, Karlsruhe) und Terminals (DUSS Köln-Eifeltor, KTL Kombi-Terminal Ludwigshafen)
- Ausblick: RFC1 mit weiterem Verkehrswachstum und hoher Bautätigkeit bereits in 2021ff → weiteres Absinken der PÜ zu erwarten

(1) BST Denzlingen, 2019 (2) SGV-Tool, 1. Halbjahr 2021

Aufbau hybrider PlanKorridor mit den Modulen Rheintal und RFC1 zur Optimierung der Zugdurchführung im Personen- und Güterverkehr

Regionales Modul Rheintal

Durch Aufbau eines klassischen Plankorridors im Rheintal können Anforderungen SPV erfüllt werden:

- Aufbau eines PlanKorridors im Rheintal zwischen Mannheim und Basel mit Fokus SPV und S&S
- Aufbau eines Kreisels analog zu bestehenden regionalen PlanKorridoren
- Einbettung in der Region Südwest (BZ Karlsruhe)
- Regionaler dispositiver Fokus auf SPV
- Berücksichtigung internationaler Zuläufe
- Erweiterung IT-Tools zur optimierten Disposition (Weiterentwicklung SUPA Kanban-Board)
- Anforderungen SGV können mit regionaler PK Variante nicht vollständig erfüllt werden

Zentrales Modul RFC1

Fokus SGV

Durch **Aufbau einer operativen Verkehrssteuerung RFC1** können **Anforderungen SGV erfüllt** werden:

- Aufbau einer operativen Verkehrssteuerung für den gesamten Laufweg inkl. Grenzübergänge
- Zentrale Steuerung durch NLZ Frankfurt inkl. zentralem
 Kreisel mit Anbindung SGV EVU
- Durchgehende zentrale Steuerung mit Ansprechpartnern in regionalen BZen
- Aufbau modulare IT-Lösung mit Fokus auf SGV-Hebel inkl.
 Möglichkeit zur Einbindung EVU (virtuell)
- Konzentrierter Fokus auf kompletten Zuglauf SGV

Um die Verkehrswende zu schaffen, müssen wir in der Infrastruktur andere Wege gehen

Darum kann es ein "Weiter so" in der Infrastruktur nicht geben

Das Verkehrsvolumen steigt

Noch nie waren mehr Personen und Güter auf unserem Schienennetz unterwegs wie heute

Die Infrastruktur ist unterfinanziert

Durch überalterte und unterfinanzierte Infrastruktur wächst das hochbelastete Netz weiter

Der Pünktlichkeit ist auf Rekordtief

Qualitätsprobleme sind schon heute deutlich spürbar mit Pünktlichkeitsniveaus um ca. 60%

Wir transformieren bis 2030 unser hochbelastetes Netz zum Hochleistungsnetz und schaffen damit einen Stabilitätsanker

Wir packen das Problem an der Wurzel

Die Lösung: Bahn und Bund entwickeln gemeinsam das hochbelastete Netz zum Hochleistungsnetz.

Für eine effektive digitale Schiene ab 2035.

Für einen reibungslosen Deutschlandtakt ab 2040.

Ziele des HLNs sind steigende Zuverlässigkeit, Leistungsfähigkeit, Planbarkeit sowie ein besseres Kundenerlebnis

Ziele Hochleistungs-Netz (HLN) **Robuste Anlagen** sorgen für eine **zuverlässigere Infrastruktur** und erhöhen somit die Pünktlichkeit für unsere Kunden

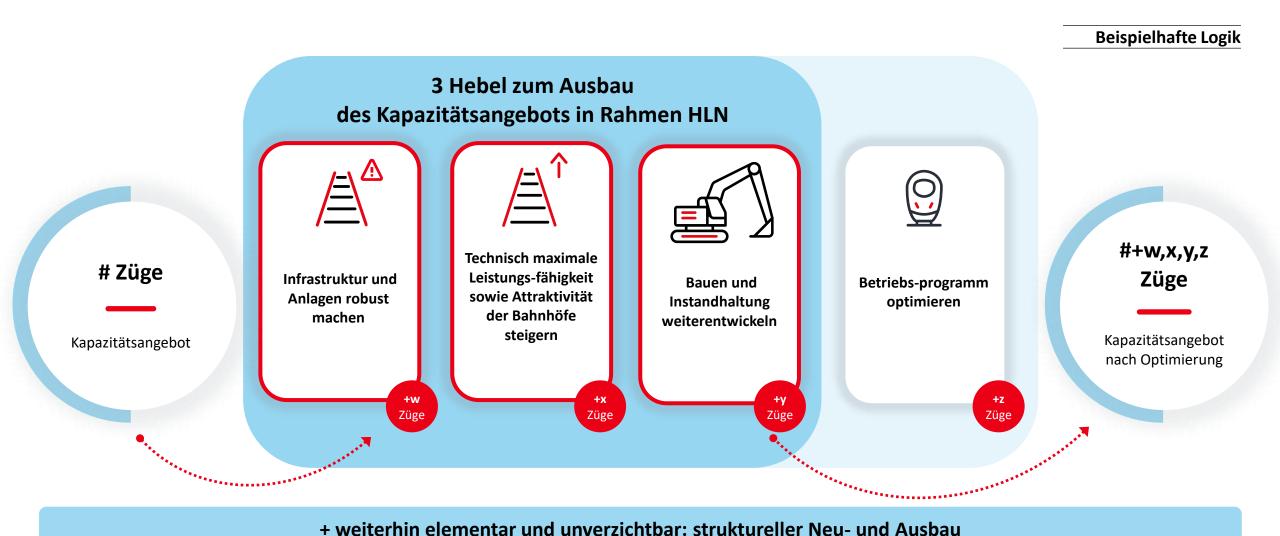
Optimale Ausrüstungs- und Layoutstandards sorgen für mehr Zugaufkommen und erhöhen somit die **Leistungsfähigkeit** der Infrastruktur

Wir verbessern das **Kundenerlebnis** durch **attraktive**, **saubere und barrierefreie Bahnhöfe** und gut **organisierten Schienenersatzverkehr**

Wir schaffen eine lange **Baufreiheit nach Generalsanierung** und erreichen somit mehr **Planbarkeit** für unsere Kunden

Zeitraum: Abschluss relevanter Generalsanierungen bis Ende der 2020er

Ziel: Verbesserung der Pünktlichkeit



Enablement: "Fitness" der Bestandsinfrastruktur für den mittelfristigen Neu- und Ausbau erhöhen

Das Hochleistungsnetz adressiert 3 Hebel, um die Leistungsfähigkeit zu erhöhen DB NETZE

Adressierbar durch das Hochleistungsnetz DB Netz AG | I.NB-SW | Rüdiger Weiß

Im hochbelasteten Netz werden die besonders störanfälligen Korridore per Generalsanierung zum Hochleistungsnetz aufgerüstet

Wie kommen wir zu einem Hochleistungsnetz?

Generalsanierung

Fokussierte Sanierung

Kapazitätserhalt und -steigerung

Besonders störanfällige Korridore erhalten eine Generalsanierung

- Radikaler, neuer Ansatz: Alle überalterten, störanfälligen Anlagen werden ersetzt
- Vorbereitete Umleiterstrecken und ein leistungsfähiger Schienenersatzverkehr (SEV 2.0) ermöglichen disruptive Bauart

Störanfällige Anlagen/Abschnitte in Korridoren werden fokussiert saniert

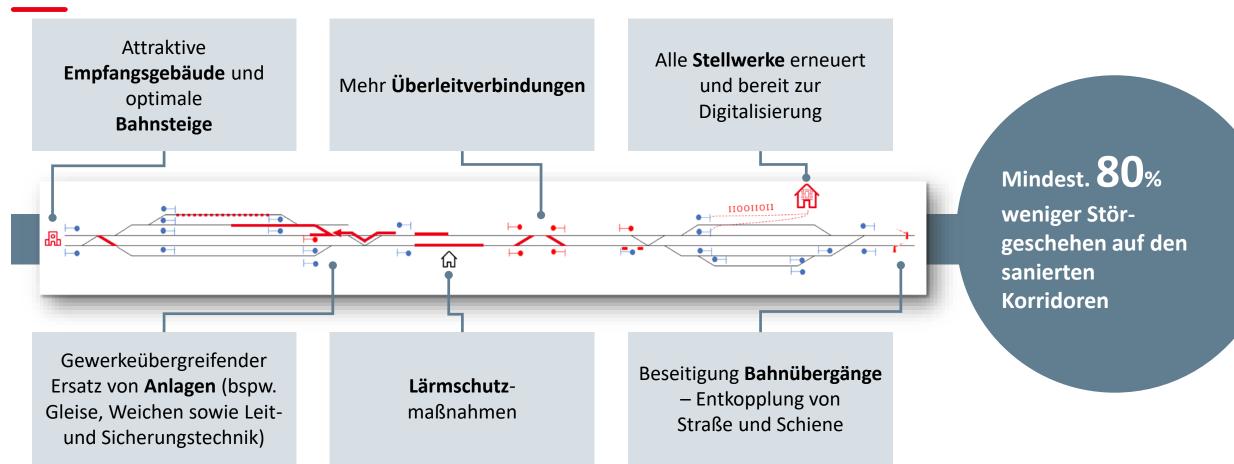
- Ausgewählte Sanierungsarbeiten mit größter Wirksamkeit auf PÜ werden gebündelt
- Für Teile des Netzes sind "maßgeschneiderte" Lösungen nötig (z.B. Knoten¹)

Starke Korridore bleiben durch neues IH-Regime erhalten und werden durch kleine und mittlere Maßnahmen gestärkt

- Neue, präventivere IH bringt störfreie Korridore auch zukünftig auf
- Kleine und mittlere Maßnahmen steigern die Leistungsfähigkeit der Korridore

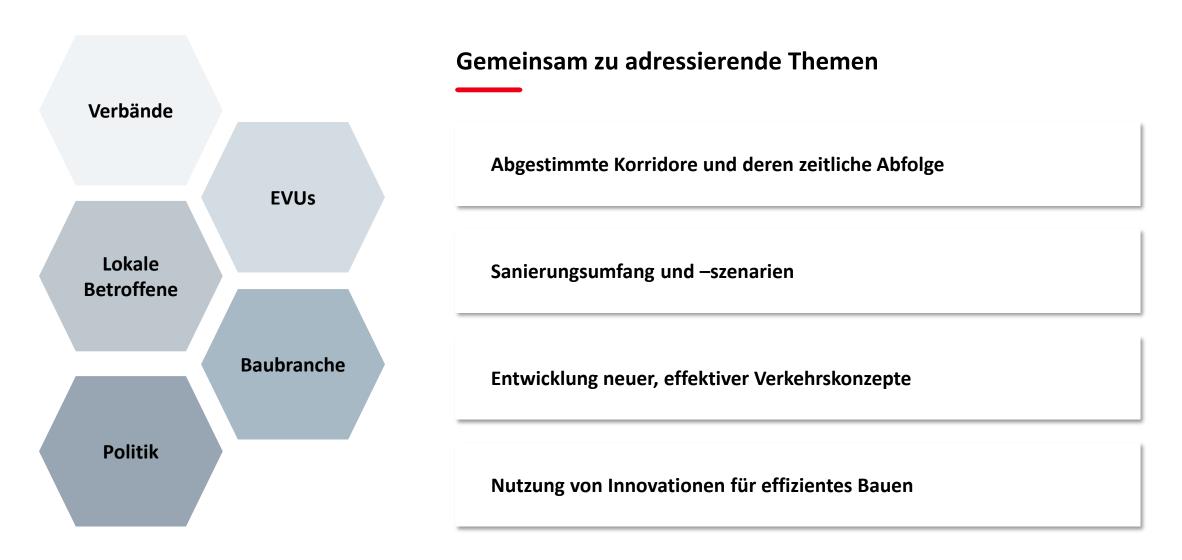
+ Weiterentwicklung der Bauprozesse durch Bündelung

(1) In separater Betrachtung


DB Netz AG | I.NB-SW | Rüdiger Weiß

Vertiefung

Eine Generalsanierung beinhaltet die Bündelung aller notwendigen Umrüstungsarbeiten im kürzest möglichen Zeitraum


Auszug gebündelter Maßnahmen¹

(1) Umsetzung je Korridor in Prüfung

Die Umsetzung des Hochleistungsnetzes geht nur im Schulterschluss mit Politik und Industrie

